

General information		
Academic subject	Applied Ma	athematics for Economics and finance
Degree course	Economics	s and business administration
Academic Year	1	
European Credit Transfer and Accumulation System (ECTS) 8		
Language	Italian	
Academic calendar (starting and ending date)		15 September - 23 December
Attendance	No	

Lucianna Cananà
lucianna.canana@uniba.it
Ionic Department in "Legal and Economic Systems of the Mediterranean: society,
environment, culture"
Tuesday, 09:00-11:00, in attendance

Syllabus	
Learning Objectives	
Course prerequisites	Basic knowledge of algebra and analytical geometry
Contents	Elements of set theory . Logical symbols. Notion of equality and inclusion. Set of parts of a set. Union, intersection, difference and complement operation. De Morgan formulas. Covering and partitioning of a whole. Cartesian product. Functions. Direct image. Reciprocal image. Injective, surjective, invertible functions. Restriction and extension of a function. Compound functions.
	Numeric sets . The set of natural, rational and real numbers. Intervals. Absolute value. Minor and major, upper and lower extremity, maximum and minimum of a subset of R. Characteristic property of the upper/lower extremity. Separate sets. Separator element. Contiguous sets. Countable sets. Completeness properties of R. Power of a number. Root nth. Logarithms and their properties. Open and closed sets. Accumulation points.
	The space R^ n . Concept of distance on R^n. Scalar product. Standard of a carrier. Around a point. Open and closed sets. Accumulation points.
	Real functions of real variable . Cartesian representation. Symmetries (parity, disparity, periodicity). Monotony. Global and local maxima and minima of a function. Convexity and inflection points. Elementary functions.
	The notion of limit for functions. The notion of limit. Uniqueness of the limit. Limit from right and left. Operations with limits. Indeterminate

	forms. Theorem on the permanence of the sign. Forced convergence theorem. Remarkable limits. Theorem on the limit of monotone functions.
	Succession. Limit of successions. Nepero's number
	Differential calculus. Concept of derivative. Geometric meaning of the derivative. "Economic" meanings of the derivative. Angular and cuspidal points. Operations with derivable functions. Higher order derivatives. Derivatives of elementary functions. Elasticity of a function. Taylor formula and applications. Necessary conditions for the existence of relative maxima and minima (Fermat's theorem). Sufficient conditions for the existence of relative extremes. Convex functions.
	Real functions of several real variables. Partial derivability. Partial derivatives of higher order. Schwarz's theorem. Differentiability and differential. Directional derivatives. Gradient. Hessian matrix. Taylor formula. Necessary conditions for the existence of relative maxima and minima (Fermat's theorem). Sufficient conditions for the existence of relative maximums and minimums. Functions implicitly defined. Dini's theorem. Maximum and minimum constraints. The Lagrange multiplier method.
	Applications to the economy . Unconstrained optimization in economics. Cobb-Douglas production functions. Homogeneous functions. Returns to scale. Marginal replacement rate. Constrained optimization in economics. The consumer problem.
	Applications to the finance: The time value of money. Discounting. The Internal Rate of Return (IRR). The bond market. Valuing bonds. The term structure of interest rates. Forward rates. Interest rate risk. Perpetuities and Annuities. Amortizing loans. The stock market.
	Valuing projects. The Net Present Value (NPV) decision rule. Interest Rate Bond.
	The indefinite integration . Primitive and indefinite integral. Integration by parts. Integration by replacement. Integration according to Riemann.
	Integral defined according to Riemann . Geometric interpretation of the integral. Existence theorem of primitives. Fundamental theorem of integral calculus. Average theorem. Calculation of areas.
Books and bibliography	Bertsch M., Dal Passo R., Giacomelli L., Analisi matematica 2/ed, McGraw Hill.

Additional materials	
	piattaforma e-learning dell'Università).
	C. Mari, Appunti di Matematica Finanziaria (scaricabile dalla
	Castellani G., De Felice M., Moriconi F., Manuale di finanza I, Il Mulino, 2005.
	Sydsaeter K., Hammond P., Strom A., Metodi matematici per l'analisi economica e finanziaria, Pearson ed.
	Torriero A., Scovenna M.,Scaglianti L. Manuale di Matematica. Metodi e Applicazioni - CEDAM – Padova.

Work schedule				
Total	Lectures		Hands on (Laboratory, working groups, seminars, field trips)	Out-of-class study hours/ Self-study hours
Hours				
200 (8x25)	64		30	106
ECTS				
8				
Teaching strategy	y			
Expected learning	g outcomes			
Knowledge and u on:	Inderstanding	At the underst studenn o D o Ir o F o E	end of the teaching activities, the student and the mathematical tools illustrated durin its must know the concepts of: ifferential equation itegral calculus inancial tools conomic tools	t must know and g the course. The
Applying knowled understanding or	dge and n:	At the end of the teaching activities, the student must be able to apply the quantitative techniques learned to the solution of economic and financial problems. • financial phenomena • financial market • economic phenomena		
Soft skills		 Mak At the acquire econom Com At the c the tech fi 	ing informed judgments and choices end of the teaching activities, the student independent assessments in the formulation ic and financial problems. <i>municating knowledge and understanding</i> end of the teaching activities, the student mu inical language typical of mathematics to solution nancial probloems	must be able to and modeling of st acquire and use ve

○ economic problems.
Capacities to continue learning
At the end of the teaching activities, the student must be able to acquire
independent assessments in the formulation and modeling of economic
and financial problems.

Assessment and feedback	
Methods of assessment	Written test - oral test
Evaluation criteria	The course is in line with the general objective of the course of study to provide economic skills and mathematical-financial techniques for an adequate understanding of the economic system and the functioning of financial markets. The course, in particular, aims at equipping students with the technical tools necessary for understanding financial phenomena. To learn the basic concepts and tools of modern finance; To know how to formulate and solve basic problems of modern finance.
Criteria for assessment and attribution of the final mark	Written test - oral test: the written test, consisting of open-ended questions and the oral test, are designed to identify the knowledge acquired in the resolution of exercises and knowledge of abstract theoretical notions and applied to economics and finance. In addition, the examination test ascertains the ability to acquire the specific language of the discipline, the ability to synthesize and communicate.
Additional information	lucianna.canana@uniba.it